Intramolecular Competition Experiments on Sulphide *vs,* **Thiocarbonyl Oxidation. Evidence for Electronic and Steric Deactivation of Thiocarbonyl Groups**

Ernst Schaumann," Bettina Lange, and Karin Reinholdt

lnstitut fur Organische Chemie und Biochemie der Universitat Hamburg, Martin- Luther- King- Platz 6, 0-2000 Hamburg 93, West Germany

Addition **of** m-chloroperbenzoic acid (6) to the thiane-derived thioketene **(1)** or the thioketone (8) leads to selective oxidation of their respective sulphide groups.

Oxidation by hydrogen peroxide or peracids to give S-oxides **is** a characteristic reaction of sulphides and thiocarbonyl compounds.^{1,2} Relatively little is known, however, about the relative ease of oxidation **of** a sulphide and a thiocarbonyl sulphur in the same molecule. If the two groups interact by resonance as in dithiocarboxylates² or in thiaxanthione,³ the thiocarbonyl group is attacked first by the oxidant. The same preference has been reported for oxidation of a compound with isolated sulphide and thiocarbonyl groups.⁴ We report here reactions that oppose the trend shown in these results.

The thioketene **(1)** contains non-interacting sulphide and thiocarbonyl groups.⁵ With the peracid (6) (1 equiv.) in

diethyl ether at 0 "C, **(1)** was oxidized in a smooth reaction to give a purple monoxide, 84% isolated, m.p. $71-72$ °C. This was given the sulphoxide structure (2),^{††} with an unchanged thioketene group, by comparison of its spectroscopic data with that of (1) [†] No trace of the isomer (3) was detected. Only one diastereoisomer of **(2)** was isolated, probably with the oxygen in the axial position.6

The same oxidation procedure quantitatively converted **(2)** into the pink sulphone (4),[†]‡ m.p. 152-155 °C. Oxidation of the thioketene moiety in **(1)** was eventually achieved with an excess of **(6)** (3.5 equiv.) (diethyl ether, 20°C) to afford the S, S, S' -trioxide $(5), \dagger$ \uparrow 75% isolated, m.p. 170[°]C (decomp.), whose spectroscopic data matched those of previously studied chioketene S-oxides.'

In contrast to the behaviour of **(6)**, nitrones such as 3,3,5,5tetramethyl-1-pyrroline 1-oxide attack the thioketene group in (1) to give the α -thiolactone (7)[†] [80%, m.p. 104—111 ^oC *Received, 28th March 1983; Com. 395*⁽¹⁾) to give the α -thiolactone (7)[†] [80%, m.p. 104—111 ^oC (decomp.)] a reaction analogous to those of other sterically hindered thioketenes.⁸ When refluxed in CCI_4 , (7) gave a trace of a ketene *via* desulphurization, but the main reaction path- **References**

$$
\begin{array}{ccc}\n\sum C=C=S & \longleftrightarrow & \sum C=\stackrel{\leftarrow}{C}-S & \longleftrightarrow & \sum \stackrel{\leftarrow}{C}-C\equiv S \\
\text{(A)} & & \text{(B)} & & \text{(C)}\n\end{array}
$$

way was decarbonylation to give the thioketone **(8),9** which also offered an opportunity to test the relative reactivities of distinct sulphide and thiocarbonyl groups in the same molecule toward peracids. Thus, with (6) $(1$ equiv.) in CH_2Cl_2 - $CCl₄$ at 20 °C, (8) reacted to give a diastereoisomerically pure pink sulphoxide **(9)t** in 91 % yield whose structure was suggested by its u.v. data $[\lambda_{\text{max}}]$ (hexane) 545 (ϵ 10), 233 nm $(\epsilon$ 7600)] and the AB system of the four ring protons that occurs in the ¹H n.m.r. spectrum $\left[\delta\right]$ (CDCl₃) 3.08, 3.55; J_{AB} 13 Hz]. For the alternative structure **(10)** there would be no electronic transitions in the visible region and no equivalence of the ring protons in the **2-** and 6-positions. Repeating our oxidation procedure with (9) gave a mixture of (11) ^{+ \ddagger} $(19\%$, m.p. 138-140 "C), **(12)t\$** (12%, m.p. 134-136 *"C),* and **(13)?\$** (12%, m.p. 184-186 "C). Unchanged **(9)** was also present.

From molecular models, steric arguments to account for the selective sulphide oxidation in **(1)** can be discarded. However, a reasonable explanation can be derived from consideration of the canonical structure (C) of the thioketene in (1) , which has some importance according to ^{13}C n.m.r. and X-ray data.¹⁰ Structure (C) has diminished electron density at the thione sulphur and consequently, attack here by the electrophilic peracid **(6)** becomes less favourable compared to attack at the ring sulphur in **(1)** or even at the sulphoxide group in **(2).** The thione group in **(8)** is situated much closer to the ring methyl groups than that in **(l),** and the resulting steric screening accounts for the observed oxidation of the relatively unhindered ring sulphur. **As** sulphoxides are generally oxidized more slowly than sulphides, 11 the thione group can compete with the sulphoxide moiety in the oxidation of **(9)** to give a mixture of **(ll), (12),** and **(13).** Thus, the relative reactivities of different sulphur functional groups toward *(6)* strongly depend on the electronic and steric environment,

We thank the Fonds der Chemischen Industrie, Frankfurt, for financial support.

- **1 S.** Oae, 'Organic Chemistry of Sulfur,' Plenum Press, New York and London, **1977.**
- **2** B. Zwanenburg, *Red. Trav. Chim. Pays-Bas,* **1982, 101, 1.**
- **3 B.** *Zwanenburg***,** *Rect. Trav. Chim. 1 ays-Bas.* **1962, 101, 1.** *Strating, Rect. Trav. Chim.**Pays-Bas, 1962***, 1962, 197, 1.** *Pays-Bas.**Pays-Bas. 1967***, 86, 577.**
	- **4** T. Karakasa and **S:** Motoki, *Tetrahedron Lett.,* **1979, 3961.**
	- *5* **E.** Schaumann, *Chem. Ber.,* **1982, 115, 2755.**
	- 6 C. R. Johnson and D. McCants, Jr., *J. Am. Chem.* **SOC., 1964, 86, 2935; J.** C. Martin and J. J. Uebel, *ibid.,* p. **2936; J. B.** Lambert and R. G. Keske, *J. Org. Chem.,* **1966,31,3429.**
	- **7 E.** Schaumann and **W.-R.** Klein, *Tetrahedron Lett.,* **1977, 3457.**
	- **8 E.** Schaumann and U. Behrens, *Angew. Chem.,* **1977,89,750;** *Angew. Chem., Int. Ed. Engl.,* **1977, 16, 722.**
	- **9 W.** Ruger, Ph.D. Thesis, University of Hamburg, **1981; A.** Krebs, W. Riiger, B. Ziegenhagen, M. Hebold, **I.** Hardtke, **R.** Muller, M. Schutz, and M. Wietzke, *Chem. Ber.,* submitted for publication.
	- **10 E.** Schaumann, **S.** Harto, and G. Adiwidjaja, *Chem. Ber.,* **1979, 112, 2698.**
	- 11 B. Plesničar, in 'Oxidation in Organic Chemistry,' part c, ed. **W. S.** Trahanovsky, Academic Press, New York, **1978,** p. **280.**

^{\$} Selected spectroscopic data. Compound **(2)** : i.r. (KBr) v(C=C=S) **1753s, v(S=O) 1030s** cm-l; 13C n.m.r. (CDCI,) 6 **94.3 (C=C=S),** 262.3 p.p.m. (C=S); u.v. (2,2,4-trimethylpentane) λ_{max} 568 (ϵ 11),
237 nm (ϵ 4320). Compound (1): i.r. (film) v(C=C=S) 1740s cm⁻¹;
¹³C n.m.r. (CDCl₃) δ 96.2 (C=C=S), 266.4 p.p.m. (C=S); u.v.
(2,2,4-tr (2,2,4-trimethylpentane) λ_{max} 565 (ε 12), 237 nm (ε 3640). Compound (5): i.r. (KBr) v(CCSO) 1720w, v(SO₂, SO) 1320, 1130, 1085s cm⁻¹; ¹³C n.m.r. (CDCl₃) δ 147.5 (C=C=S), 229.5 p.p.m.
(C=SO); u.v. (MeCN)